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a b s t r a c t

This work overcomes the difficulty of the previous matched interface and boundary (MIB)
method in dealing with interfaces with non-constant curvatures for optical waveguide
analysis. This difficulty is essentially bypassed by avoiding the use of local cylindrical coor-
dinates in the improved MIB method. Instead, novel jump conditions are derived along glo-
bal Cartesian directions for the transverse magnetic field components. Effective interface
treatments are proposed to rigorously impose jump conditions across arbitrarily curved
interfaces based on a simple Cartesian grid. Even though each field component satisfies
the scalar Helmholtz equation, the enforcement of jump conditions couples two transverse
magnetic field components, so that the resulting MIB method is a full-vectorial approach
for the modal analysis of optical waveguides. The numerical performance of the proposed
MIB method is investigated by considering interface problems with both constant and gen-
eral curvatures. The MIB method is shown to be able to deliver a fourth order of accuracy in
all cases, even when a high frequency solution is involved.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This work overcomes the difficulty of dealing with non-constant curvatures in the recently developed high order matched
interface and boundary (MIB) method [39] for eigenmode analysis of optical waveguides with dielectric interfaces. As basic
building blocks of optoelectronic devices, step-index optical waveguides are often of regular cross-sections, such as rectangle
and circle. However, in recent years, there has been an increased interest in the design of waveguides with arbitrary refrac-
tive profiles to address modern application needs [6]. For the purpose of test and design of such devices, advanced numerical
approaches are called for.

Consider a linear isotropic optical waveguide which is homogeneous along the z-direction. Its cross-section typically con-
sists of two regions: an inner region X�, or core, and an infinite outer region Xþ, or cladding. See Fig. 1(a). Across the interface
C separating X� and Xþ, the permittivity � is discontinuous, while the permeability l ¼ 1 throughout. In this paper, we will
assume the dielectric interface C being arbitrarily curved and C1 continuous. Except on C, a Cartesian component u of the
magnetic field intensity H or electric field intensity E satisfies the scalar Helmholtz equation
@2u
@x2 þ

@2u
@y2 þx2�u ¼ b2u; in X� [Xþ; ð1Þ
where b is the propagation constant and x ¼ 2p=k is the free space wavenumber with k being the free space wavelength.
Across C, field solutions in both media are related analytically via the jump conditions
. All rights reserved.
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Fig. 1. (a) A typical cross-section of a optical waveguide with arbitrarily curved interface. (b) The osculating circle at an interface point P and the
corresponding local coordinate.
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n̂� ðEþ � E�Þ ¼ 0; n̂ � ð�þEþ � ��E�Þ ¼ 0; n̂� ðHþ �H�Þ ¼ 0; n̂ � ðlþHþ � l�H�Þ ¼ 0; ð2Þ
where the superscript, � or +, denotes the limiting value of a function from one side or the other of the interface. Here n̂ is
the unit vector normal to the interface, pointing from X� into Xþ.

In the past two decades, numerous numerical methods have been proposed to solve optical waveguides, including finite
difference method [26], finite element method [19], pseudospectral method [3], discontinuous Galerkin method [8], and so
on. The general trend in the field has been to move from the scalar methods which solve a single field component to the the
full-vectorial methods that solve more than one field components simultaneously. The first major progress was due to Stern
[27] who proposed a semivectorial finite difference method, which essentially incorporates an averaging of the permittivity
into the scalar formulation. Stern’s scheme has been further improved by Vassallo [31] to yield uniformly second order con-
vergence for step-index waveguides. Since then, many full-vectorial methods have been presented, see for example
[1,34,24,13,33]. The evolution from scalar methods to full-vectorial approaches was primarily driven by the need of improv-
ing numerical accuracy. In fact, a simple mathematical justification of such a development is that interface jump conditions
(2) couple more than one field components, even though each component satisfies the scalar Helmholtz Eq. (1). Thus, a full-
vectorial approach in which jump conditions (2) are accounted for in some manner, will be more accurate than a scalar
method. For the same reason, in order to formulate a optical solver whose order of accuracy is higher than two, a higher or-
der interface scheme that appropriately enforces jump conditions in the numerical discretization, is essential [40].

Many interface schemes for optical waveguides have been developed to enforce jump conditions (2) on straight dielectric
interfaces [32,28,12,5,35,29]. Typically, to achieve higher order convergence, higher order jump conditions furthered derived
from (2) and Maxwell’s equations are matched via the Taylor series expansions in these schemes. By properly incorporating
jump conditions into infinite series solution of the two-dimensional (2D) Helmholtz equation involving Bessel functions,
sines and cosines, several full-vectorial finite difference equation methods have been constructed by Hadley [14–17]. Up
to 6th order accuracy has been attained for 2D straight interface problems [16]. However, the extension of these interface
schemes to ultra high order could be technically challenging, because formidable algebra is involved in deriving ultra high
order jump conditions. Such a difficulty has been overcome in a recently developed matched interface and boundary (MIB)
method, through introducing the concept of the iterative use of low order jump conditions [38]. Orders up to 12 have been
numerically achieved in solving rectangular waveguide with a single straight interface [38].

In order to secure high accuracy in solving optical waveguides with curved interfaces, besides the rigorous enforcement of
jump conditions (2), sophisticated numerical treatments to accommodate the complicated geometry associated with arbi-
trarily curved interfaces are indispensable. In resolving arbitrarily curved boundary, one popular way in the literature is fit-
ting the grid to the boundary. For some numerical methods, such as boundary element method [23] and method of line
analysis [36], the grid fitting can be simply attained via sampling exactly on the interfaces. Thus, the staircasing error is
not an issue when applying these methods to photonic simulations [23,36]. For other methods, body-fitted grids can be gen-
erated through the use of unstructured grids or body-conforming mesh transformations. For example, a non-uniform trian-
gular mesh has been adopted in a full-vectorial finite difference method [18]. For the finite element methods, curvilinear/
isoparametric elements [20,7] have been employed to modify the triangular mesh near the interfaces. Similarly, circular
and/or elliptical arcs instead of straight arc are utilized in a boundary integral method for representing arbitrarily shaped
waveguides [6]. A curvilinear mapping technique has been introduced in a multidomain pseudospectral method [3] to cope
with general curved interfaces, and spectral convergence has been reported for curved interfaces with constant curvature [3].

In the present paper, we are more interested in constructing Cartesian grid methods for optical simulation with curved
dielectric interfaces. Comparing with body-fitted grid methods, Cartesian grid methods are relatively simple and avoid the
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complicated procedure of mesh generation. Moreover, Cartesian grid methods could lend themselves to many contemporary
software packages which are mainly developed for Cartesian grids. For solving interface problems associated with Poisson
equations, Cartesian grid methods have been shown to be able to represent arbitrary interfaces [21,9,30] and deliver higher
order of accuracy [42]. For optical waveguides with curved interfaces, the first Cartesian grid method was suggested by
Chiang et al. in [4]. The jump conditions (2) are rigorously imposed in terms of local cylindrical components of E and H
in [4] so that the second order convergence has been achieved. Recently, we have proposed a novel full-vectorial matched
interface and boundary (MIB) method [39], which also implements jump conditions based on local cylindrical components.
Via iteratively matching jump conditions, the fourth order convergence has been numerically confirmed for optical fibers
with constant curvature [39].

However, the previous MIB approach [39] is cumbersome to be generalized to accommodate arbitrarily curved interfaces
with non-constant curvatures. A complicated process has to be taken, which involves the generation of a lot of osculating
circles surrounding the interface. Within each osculating circle, forward and backward coordinate transformations shall
be performed so that jump conditions (2) can be satisfied in the local cylindrical coordinate, while eigenmodes are still
sought in terms of global Cartesian components. Besides the tedious implementation, there are also new mathematical is-
sues needed to be taken care of. For example, in order to treat negative curvature, the MIB scheme needs to be reformulated
to account for the cases where the centers of osculating circles are switched to the other hand side of the interface. Moreover,
when the curvature variants rapidly or when a coarse grid is used, there is a mismatching between the osculating arcs and
the interface. The impact of such a mismatching on the accuracy of the MIB scheme [39] is unclear.

The objective of this paper is to overcome the aforementioned difficulty of the MIB method, by introducing a simpler pro-
cedure to enforce jump conditions. The proposed MIB method can then attain the fourth order of accuracy for optical sim-
ulation with arbitrarily curved interfaces. The full-vectorial MIB method developed in this work and in the previous studies
[38,39] are all reformulated from a scalar MIB method, originally proposed in [40] for solving Maxwell’s equations with
straight interfaces. The scalar MIB method has been generalized to treat curved interfaces for solving the Poisson equation
[42]. Recently, the application of the MIB method as a fictitious domain boundary closure scheme for high order finite dif-
ferences has been considered in [37,41].

In the proposed MIB method and the previous MIB schemes [40,42,38,39,37,41], the use of fictitious nodes is an important
step in enforcing the jump/boundary conditions. In terms of using fictitious points or ghost cells, the MIB shares some sim-
ilarities with the ghost fluid method (GFM), originally developed by Fedkiw et al. [9] for treating contact discontinuities in
the inviscid Euler equations. The GFM has been subsequently generalized as a sharp interface scheme for solving Poisson
equation with jump conditions [22], and as a second order accurate symmetric scheme [10,25] and a fourth order accurate
non-symmetric scheme [11], respectively, for solving Poisson equation with Dirichlet boundary conditions on irregular do-
mains. In both MIB and GFM, the solution is smoothly extended by some means across the interface or boundary into a ghost
fluid. On irregular grid points, when the finite difference stencil refers to a node from the other side of the interface or outside
the boundary, a ghost fluid value instead of the real one will be supplied. The major difference between the GFM and MIB is
on how to impose jump conditions for the smooth extension. In the GFM, the jump in the normal derivative is correctly cap-
tured through a projection to Cartesian coordinate directions, while the jump in the tangential derivatives is neglected [22].
This treatment contributes to the simplicity, robustness, and symmetry of the GFM, albeit limits the order of the GFM for the
interface problems [22]. On the other hand, the jump conditions are always rigorously satisfied in the MIB method, so that
the MIB typically achieves the fourth order of accuracy in solving curved interface problems [42,39].

The rest of this paper is organized as follows. Section 2 is devoted to theory and algorithm of the proposed full-vectorial
MIB method. For completeness, the MIB method developed in [39] will be briefly described. Numerical tests are carried out
to validate the proposed method in resolving interfaces with non-constant curvatures in Section 3. Finally, a conclusion ends
this paper.

2. Theory and algorithm

In this section, a brief introduction to the mathematical background and setting of eigenmode analysis of optical wave-
guides is first given. The general procedure of the full-vectorial matched interface and boundary (MIB) methods will then be
described. Interface treatment used in the previously developed MIB method [39] will be briefly reviewed. The difficulty
associated with such a MIB method for dielectric interfaces with non-constant curvatures will be discussed. A new full-vec-
torial MIB method will then be proposed to circumvent this difficulty. Finally, the discretization details of the MIB schemes
are presented.

2.1. Physical equations and boundary conditions

Consider a linear isotropic optical waveguide with a general material interface. A typical configuration is shown in
Fig. 1(a). In this paper, we will assume the dielectric interface C being arbitrarily curved and C1 continuous. Mathematically,
the time-harmonic electromagnetic wave guiding is governed by the source-free Maxwell’s equations. For simplicity, we will
consider only equations for the magnetic field intensity H. Equations for the electric field intensity E can be similarly treated.
Using Maxwell’s equations, the following vector wave equation can be derived for H
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r� 1
�
r�H

� �
�x2lH ¼ 0; in X; ð3Þ
where � and l are, respectively, the relative permittivity and permeability coefficients, and x ¼ 2p=k is the free space wave-
number with k being the free space wavelength. Using vector analysis, Eq. (3) can be rewritten into the vector Helmholtz
equations
r2Hþx2�lH ¼ �� r1
�
� r

� �
H; in X: ð4Þ
Because the optical waveguides are normally homogeneous in the z-direction, one can assume the field H varies as e�jbz along
the z-coordinate, where b is the propagation constant and j ¼

ffiffiffiffiffiffiffi
�1
p

. Consequently, we have @2H
@z2 ¼ �b2H and @ð1=�Þ

@z ¼ 0, so that
by eliminating the term e�jbz, Eq. (4) reduces to
r2
t Hþx2�lH ¼ b2H� � rt

1
�
� rt

� �
H; in X; ð5Þ
where rt is the transverse part of r. Within each homogeneous medium, either X� or Xþ, the dielectric coefficient � is a
constant so that the singular term on the right hand side of (5) can be dropped
r2
t Hþx2�lH ¼ b2H; in X� [Xþ: ð6Þ
Thus, the Cartesian components of H, denoting as ðHx;Hy;HzÞ, satisfy the scalar Helmholtz equation given in (1).
To recover the effect of the singular term being dropped in (5), the jump conditions (2) should be imposed on C in the

numerical discretization. This is the essential theme underlying any interface scheme. In the following, we will consider
the jump conditions (2) in terms of a local cylindrical coordinate. Let the curvature of C at an interface point P be j. Then
a segment of C surround P can be approximated via the osculating circle defined at P with the effective radius R ¼ 1=j. This
gives rise to a local cylindrical coordinate system ð~q; ~u;~zÞ, see Fig. 1(b). On such a local grid system, Eq. (2) reduces to the
following six zeroth order jump conditions for the cylindrical components of E and H
½Hz� ¼ 0; ½Hu� ¼ 0; ½Hq� ¼ 0; ½Ez� ¼ 0; ½Eu� ¼ 0; ½�Eq� ¼ 0; ð7Þ
where ½u� denotes a function jump for a scalar function u, i.e., ½u� :¼ limq!Rþu� limq!R�u.
In the following, we will derive necessary first order jump conditions for Hq and Hu. Since the dielectric medium remains

homogeneous along either the u or z direction, some first order jump conditions can be directly derived by taking derivatives
along these two directions
@Hu

@u

� �
¼ 0;

@Hq

@u

� �
¼ 0;

@Hz

@z

� �
¼ 0; ð8Þ
Other necessary first order jump conditions can be derived by using Maxwell’s equations. Consider the Gauss’s law for mag-
netic field with l ¼ 1
r �H ¼ 1
q

@

@q
ðqHqÞ þ 1

q
@Hu

@u
þ @Hz

@z
¼ @Hq

@q
þ 1

q
Hq þ 1

q
@Hu

@u
þ @Hz

@z
¼ 0: ð9Þ
Since Eq. (9) is valid in both X� and Xþ, one can take jump values on both hand sides of Eq. (9)
@Hq

@q

� �
þ 1

R
½Hq� þ 1

R
@Hu

@u

� �
þ @Hz

@z

� �
¼ 0: ð10Þ
With the last three jump values vanishing in Eq. (10), we thus have @Hq

@q

h i
¼ 0. To derive the last first order jump condition, we

consider the time harmonic Maxwell equation for Ez
jxEz ¼ 1
�q

@ðqHuÞ
@q

� @Hq

@u

� �
¼ 1
�
@Hu

@q
þ 1
�q

Hu � 1
�q

@Hq

@u
: ð11Þ
By taking jump values in (11) and noting that ½Ez� ¼ 0, we have
1
�
@Hu

@q

� �
þ 1

R
1
�

Hu
� �

� 1
R

1
�
@Hq

@u

� �
¼ 0: ð12Þ
All together, we have six jump conditions for local field components ðHq;HuÞ [4,39]
½Hq� ¼ 0; ½Hu� ¼ 0;
@Hq

@q

� �
¼ 0;

@Hq

@u

� �
¼ 0;

@Hu

@u

� �
¼ 0;

1
�
@Hu

@q

� �
þ 1

R
1
�

Hu
� �

¼ 1
R

1
�
@Hq

@u

� �
: ð13Þ
In the present study, we will construct novel Cartesian grid methods to solve the full-vectorial eigenvalue problems of Hx and
Hy satisfying the Helmholtz Eq. (1) in X� [Xþ and subject to the jump conditions (13) on C. Since the eigenfunctions decay
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exponentially in the cladding, a large enough square computational domain with the Dirichlet zero boundary conditions will
be assumed.

2.2. Full-vectorial finite difference methods based on the MIB

We will describe the general procedure of full-vectorial MIB methods in this subsection. Consider a uniform Cartesian grid
throughout. To achieve the fourth order of accuracy, the standard fourth order finite difference (FD) discretization of (1) is
carried out on grid nodes away from C, while the FD weights of nodes in the vicinity of the interface shall be modified. A
universal rule here is that to approximate function or its derivatives on one side of interface, one never directly refers to func-
tion values from the other side. Instead, fictitious values from the other side of the interface will be supplied. For example, we
denote H to be either Hx or Hy and Hi;j and eHi;j being, respectively, function and fictitious value at the node ðxi; yjÞ. Referring to
Fig. 2(a), we have the following modified FD approximation for the y derivative
Fig. 2.
both ca
@2

@y2 Hi;j ¼
1

Dy2 � 1
12

Hi;j�2 þ
4
3

Hi;j�1 �
5
2

Hi;j þ
4
3
eHi;jþ1 �

1
12
eHi;jþ2

� �
: ð14Þ
This approximation maintains the fourth order of accuracy, provided eHi;jþ1 and eHi;jþ2 are accurately estimated. In considering
both x and y derivatives, it is sufficient to accurately generate four layers of fictitious values eH (marked with open circles in
Fig. 2) surrounding C, two inside and two outside. In the MIB schemes, each fictitious value of eHx and eHy at a given node
ðxi; yjÞ will be represented as a linear combination of function values of Hx and Hy on a set of neighboring nodes Si;j
eHx
i;j ¼

X
ðxl ;ykÞ2Si;j

Ai;j
l;kHx

l;k þ Bi;j
l;kHy

l;k

� �
; eHy

i;j ¼
X

ðxl ;ykÞ2Si;j

Ci;j
l;kHx

l;k þ Di;j
l;kHy

l;k

� �
: ð15Þ
The major task of a particular MIB scheme is to determine the points set Si;j and the representation coefficients Ai;j
l;k;B

i;j
l;k;C

i;j
l;k,

and Di;j
l;k via discretizing jump conditions (13). Finally (15) will be substituted into (14) to modify the y derivative approxi-

mation. When all necessary x and y derivatives are corrected in discretizing (1), a matrix equation is generated for solving the
fundamental eigenmode of the optical waveguide.

2.3. The MIB interface treatment based on local field components

A key idea in the MIB interface treatment is to decompose the two-dimensional (2D) jump conditions (13) so that they
can be imposed in a one-dimensional (1D) manner. For the MIB method reported in [39] which is built based on ðHq;HuÞ, a
detailed discussion of the interface treatment along x direction has been given. Here, we will briefly describe y direction
treatment.

Referring to Fig. 2(a), eight fictitious values of eHx and eHy on four fictitious points ðxi; yj�1Þ; ðxi; yjÞ; ðxi; yjþ1Þ, and ðxi; yjþ2Þ
need to be determined. We denote the intersection point of interface C and x ¼ xi grid line as ðxi;C0Þ and the angle between
Illustration of the MIB grid partitions. (a) The MIB scheme based on local field components; (b) The MIB scheme based on global field components. In
ses, the fictitious nodes, original Cartesian nodes, and auxiliary nodes, are shown as, respectively, open circles, filled circles, and squares.
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the normal vector at ðxi;C0Þ and the x-axis as h. An osculating circle will be formed based on the interface point ðxi;C0Þ to
define a local cylindrical coordinate system ð~q; ~u;~zÞ. Coordinate transformations can be employed to convert between the
global field components ðHx;HyÞ and local components ðHq;HuÞ
Hq ¼ cos uHx þ sin uHy; Hu ¼ � sinuHx þ cos uHy; ð16Þ

Hx ¼ cos uHq � sin uHu; Hy ¼ sin uHq þ cos uHu: ð17Þ
With these forward and backward transforms, the task of the MIB interface treatment becomes to represent fictitious valueseHq and eHu on four fictitious points ðxi; yj�1Þ; ðxi; yjÞ; ðxi; yjþ1Þ, and ðxi; yjþ2Þ in terms of some nearby Hq and Hu values.
To avoid unnecessary interpolations, jump conditions (13) will be discretized along the y direction using the global Carte-

sian nodes as shown in Fig. 2(a). We thus need to rewrite jump conditions (13) into Cartesian directions ðx; yÞ. Consider Hq

first. Conditions @Hq

@q

h i
¼ 0 and @Hq

@u

h i
¼ 0 give rise to @Hq

@x

	 

¼ 0 and @Hq

@y

h i
¼ 0. Consequently, the MIB treatment of Hq can be

carried out in a 1D manner by discretizing two jump conditions along the y direction
½Hq� ¼ 0;
@Hq

@y

� �
¼ 0: ð18Þ
With the details given in [39], the enforcement of (18) yields a representation of four fictitious values

eHq
i;j�1;

eHq
i;j;
eHq

i;jþ1;
eHq

i;jþ2

� �T
in terms of ten function values Hq

i;j�4;H
q
i;j�3; . . . ;Hq

i;jþ5

� �T
.

We next consider the MIB treatment for Hu. Unlike those for Hq, jump conditions for Hu can not be fully decomposed into
1D. To derive necessary equations, we need the transformations for the derivatives
@

@q
¼ cos u

@

@x
þ sin u

@

@y
;

@

@u
¼ �q sinu

@

@x
þ q cos u

@

@y
: ð19Þ
Thus, we have
1
�
@Hu

@q

� �
¼ 1
�

cos u
@Hu

@x

� �
þ 1
�

sin u
@Hu

@y

� �
¼ cos h

1
�
@Hu

@x

� �
þ sin h

1
�
@Hu

@y

� �
; ð20Þ

1
�
@Hu

@u

� �
¼ � 1

�
q sinu

@Hu

@x

� �
þ 1
�
q cos u

@Hu

@y

� �
¼ �R sin h

1
�
@Hu

@x

� �
þ R cos h

1
�
@Hu

@y

� �
: ð21Þ
We note that when taking jump values ½��, one needs to set q ¼ R and u ¼ h at the interface point ðxi;C0Þ. According to (20),
the last equation in (13) can be rewritten as
cos h
1
�
@Hu

@x

� �
þ sin h

1
�
@Hu

@y

� �
þ 1

R
1
�

Hu
� �

¼ 1
R

1
�
@Hq

@u

� �
: ð22Þ
By multiplying R sin h on both hand sides of (22), we have
R sin h cos h
1
�
@Hu

@x

� �
þ R sin2 h

1
�
@Hu

@y

� �
þ sin h

1
�

Hu
� �

¼ sin h
1
�
@Hq

@u

� �
: ð23Þ
By substituting (21) to eliminate the x derivative term, one attains
R cos2 h
1
�
@Hu

@y

� �
� cos h

1
�
@Hu

@u

� �
þ R sin2 h

1
�
@Hu

@y

� �
þ sin h

1
�

Hu
� �

¼ sin h
1
�
@Hq

@u

� �
: ð24Þ
This simplifies into a first order jump condition involving y and u derivatives,
1
�
@Hu

@y

� �
þ sin h

R
1
�

Hu
� �

¼ cos h
R

1
�
@Hu

@u

� �
þ sin h

R
1
�
@Hq

@u

� �
: ð25Þ
We note that the u derivatives in (25) are continuous across the interface, according to the jump conditions @Hq

@u

h i
¼ 0 and

@Hu

@u

h i
¼ 0. Thus, the jumps in terms of these two derivatives can be dropped. Therefore, we finally have the following two

jump conditions for Hu
½Hu� ¼ 0;
1
�
@Hu

@y

� �
þ sin h

R
1
�

Hu
� �

¼ cos h
R

1
�þ
� 1
��

� �
@Hu

@u
þ sin h

R
1
�þ
� 1
��

� �
@Hq

@u
: ð26Þ
Numerically, two u derivatives in (26) will be approximated along the arc of the osculating circle. To perform a fourth order
FD approximation, a five points stencil sampling at some intersection points of the osculating circle with y grid lines will be
employed. For the case shown in Fig. 2(a), these auxiliary points are chosen to be ðxi�2;C�2Þ; ðxi�1;C�1Þ; ðxi;C0Þ; ðxiþ1;C1Þ, and
ðxiþ2;C2Þ. After two u derivatives being accurately estimated, the 1D MIB iterative procedure can be used to discretize jump
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conditions (26) along the y direction. This represents four fictitious values eHu
i;j�1;

eHu
i;j;
eHu

i;jþ1;
eHu

i;jþ2

� �T
in terms of Hq and Hu

values on ten Cartesian nodes ðxi; yj�4Þ; ðxi; yj�3Þ; . . . ; ðxi; yjþ5Þ and five auxiliary points [39].
With representations of eHq and eHu, the forward and backward transformations (16) and (17) are conducted so that eHx

and eHy are now represented by Hx and Hy values on the aforementioned 15 points. Finally, function values of Hx and Hy on
each auxiliary point will be interpolated along y line by using five Cartesian nodes exclusively from one side of the interface
C. Both positive and negative sides can be used in principle. However, for the present study, it has been found that grid nodes
from X� give a better result because the eigenfunctions decay exponentially in Xþ. These interpolations involve additional 20
Cartesian nodes. Together with the 10 Cartesian nodes along the primary y-line, the point set Si;j contains 30 grid nodes.
Therefore, in the final MIB discretization, each fictitious value of eHx or eHy will depend on totally 60 function values on these
30 Cartesian nodes [39].

2.4. The MIB interface treatment based on global field components

However, the extension of the MIB method [39] discussed above to deal with arbitrarily curved interfaces can be cum-
bersome. To carry out all necessary MIB interface treatments, a lot of osculating circles have to be formed throughout the
interface. Based on osculating circles, local coordinates need to be established to facilitate forward and backward coordinate
transformations. The practical implementation of such a procedure could be tedious. Moreover, there are new mathematical
concerns needed to be addressed. For non-constant curvature, the osculating arc only agrees with the interface locally, see
Fig. 1(b). When the curvature variants rapidly or when a coarse grid is used, such a mismatching becomes severe and might
affect the accuracy of the MIB scheme. Furthermore, for interfaces with negative curvatures or concave segments, the center
of the osculating circle will be switched to the positive side of C so that the MIB interface matching has to be mathematically
reformulated.

We thus propose a new MIB method which is easier to implement. This is essentially achieved via enforcing jump con-
ditions (13) based on global field components Hx and Hy, so that the aforementioned difficulties associated with osculating
circles and local coordinates can be bypassed. By using transformation (16), zeroth order jump conditions ½Hq� ¼ 0 and
½Hu� ¼ 0 translate into
cos h½Hx� þ sin h½Hy� ¼ 0; � sin h½Hx� þ cos h½Hy� ¼ 0; ð27Þ
which further implies ½Hx� ¼ 0 and ½Hy� ¼ 0. To derive first order jump conditions, we first completely expand the jump con-

dition @Hq

@q

h i
¼ 0 by using (16) and (19),
cos2 h
@Hx

@x

� �
þ sin h cos h

@Hx

@y

� �
þ sin h cos h

@Hy

@x

� �
þ sin2 h

@Hy

@y

� �
¼ 0: ð28Þ
Similarly, the full expansion of @Hq

@u

h i
¼ 0 gives rise to
� sin h½Hx� � R sin h cos h
@Hx

@x

� �
þ R cos2 h

@Hx

@y

� �
þ cos h½Hy� � R sin2 h

@Hy

@x

� �
þ R sin h cos h

@Hy

@y

� �
¼ 0: ð29Þ
By noting that ½Hx� ¼ 0 and ½Hy� ¼ 0, this equation reduces to
� sin h cos h
@Hx

@x

� �
þ cos2 h

@Hx

@y

� �
� sin2 h

@Hy

@x

� �
þ sin h cos h

@Hy

@y

� �
¼ 0: ð30Þ
Similarly, the jump condition @Hu

@u

h i
¼ 0 will reduce to
sin2 h
@Hx

@x

� �
� sin h cos h

@Hx

@y

� �
� sin h cos h

@Hy

@x

� �
þ cos2 h

@Hy

@y

� �
¼ 0: ð31Þ
Through some algebraic combinations, some simplified jump conditions can be derived:
ð28Þ � cos h� ð30Þ � sin h : cos h
@Hx

@x

� �
þ sin h

@Hy

@x

� �
¼ 0; ð32Þ

ð28Þ � sin hþ ð30Þ � cos h : cos h
@Hx

@y

� �
þ sin h

@Hy

@y

� �
¼ 0; ð33Þ

ð30Þ � sin hþ ð31Þ � cos h : � sin h
@Hy

@x

� �
þ cos h

@Hy

@y

� �
¼ 0; ð34Þ

ð30Þ � cos h� ð31Þ � sin h : � sin h
@Hx

@x

� �
þ cos h

@Hx

@y

� �
¼ 0: ð35Þ
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Finally, the last equation in (13) can be expanded as
� sin h cos h
1
�
@Hx

@x

� �
� sin2 h

1
�
@Hx

@y

� �
þ cos2 h

1
�
@Hy

@x

� �
þ sin h cos h

1
�
@Hy

@y

� �� �
þ 1

R
� sin h

1
�

Hx
� �

þ cos h
1
�

Hy
� �� �

¼ 1
R
� sin h

1
�

Hx
� �

� R sin h cos h
1
�
@Hx

@x

� �
þ R cos2 h

1
�
@Hx

@y

� �
þ cos h

1
�

Hy
� �

� R sin2 h
1
�
@Hy

@x

� �
þ R sin h cos h

1
�
@Hy

@y

� �� �
:

ð36Þ
This gives rise to a simple jump condition
1
�
@Hx

@y

� �
¼ 1
�
@Hy

@x

� �
; ð37Þ
which has been previously studied in the MIB method for rectangular waveguides [38].
The proposed MIB interface treatments employ different sets of jump conditions for x and y-directions. In both cases, the

zeroth order jump conditions ½Hx� ¼ 0 and ½Hy� ¼ 0 will be used. For x-direction case, (32) is first chosen. To avoid calculating
jump values along y-axis, (37) needs to be rewritten as
1
�
@Hy

@x

� �
¼ 1
�þ

@Hxþ

@y
� 1
��

@Hx�

@y
: ð38Þ
For two one-sided limit values in (38) along the y-direction, one will be canceled by using (35) and another will be numer-
ically approximated. In general, one has the freedom to choose the side of cancellation. Nevertheless, for the present study,
the positive side will be always canceled because the eigenfunctions are exponentially decaying in Xþ. This is in consistence
with the previous MIB scheme [39]. To this end, (35) is first rewritten as
@Hxþ

@y
¼ @Hx�

@y
þ tan h

@Hx

@x

� �
: ð39Þ
By substituting (39) into (38), one has
1
�
@Hy

@x

� �
¼ 1
�þ

@Hx�

@y
þ tan h

@Hx

@x

� �� �
� 1
��

@Hx�

@y
: ð40Þ
Therefore, the MIB interface treatment along x-direction is based on the following four jump conditions
½Hx� ¼ 0; ½Hy� ¼ 0; cos h
@Hx

@x

� �
þ sin h

@Hy

@x

� �
¼ 0;

1
�
@Hy

@x

� �
� tan h
�þ

@Hx

@x

� �
¼ 1

�þ
� 1
��

� �
@Hx�

@y
: ð41Þ
Through similar derivation, the MIB interface treatment along y-direction is based on the following four jump conditions
½Hx� ¼ 0; ½Hy� ¼ 0; cos h
@Hx

@y

� �
þ sin h

@Hy

@y

� �
¼ 0;

1
�
@Hx

@y

� �
� cot h
�þ

@Hy

@y

� �
¼ 1

�þ
� 1
��

� �
@Hy�

@x
: ð42Þ
2.5. The MIB discretization of jump conditions

The MIB discretization of jump conditions (41) will be discussed in this subsection, while the y direction MIB scheme for
(42) can be similarly constructed. Consider a grid configuration as shown in Fig. 2(b). Denote the angle between x direction
and the outward normal vector~n at the interface point ðC0; yjÞ to be h. The FD approximation at ðxiþ1; yjÞwill be modified to be
@2

@x2 Hiþ1;j ¼
1

Dx2 � 1
12
eHi�1;j þ

4
3
eHi;j �

5
2

Hiþ1;j þ
4
3

Hiþ2;j �
1

12
Hiþ3;j

� �
: ð43Þ
An iterative procedure is commonly employed in the MIB schemes [40,42,41,38,39] to determine all necessary fictitious
values.

At the first step, we determine four fictitious values eHx
i;j;
eHy

i;j;
eHx

iþ1;j;
eHy

iþ1;j

� �
by discretizing four jump conditions (41) in the

same manner of (43). In particular, we define two grid stencils along the primary line y ¼ yj, i.e., H�x :¼
ðHx

i�4;j;H
x
i�3;j;H

x
i�2;j;H

x
i�1;j;H

x
i;j;
eHx

iþ1;jÞ
T and Hþx :¼ ðeHx

i;j;H
x
iþ1;j;H

x
iþ2;j;H

x
iþ3;j;H

x
iþ4;j;H

x
iþ5;jÞ

T . Also, H�y and Hþy can be defined similarly.

Denote the finite difference (FD) weight vector of these two stencils differentiating at C0 to be, respectively, W�
k and Wþ

k .
Here the subscript k represents interpolation (k ¼ 0) and the first order derivative approximation (k ¼ 1). With these FD
weights, the first three jump conditions in (41) can be discretized as
W�
0 H�x ¼Wþ

0 Hþx ; W�
0 H�y ¼Wþ

0 Hþy ; cos hW�
1 H�x þ sin hW�

1 H�y ¼ cos hWþ
1 Hþx þ sin hWþ

1 Hþy : ð44Þ
The last jump condition in (41) involves one y derivative, which has to be approximated along the y direction. Denote some
auxiliary points to be intersection points of the line x ¼ C0 with y grid lines, i.e., ðC0; yj�2Þ; ðC0; yj�1Þ; ðC0; yjÞ; ðC0; yjþ1Þ, and
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ðC0; yjþ2Þ in Fig. 2(b). Let the Hx� values on these five auxiliary nodes be HC
x :¼ ðHx�

C0 ;j�2;H
x�
C0 ;j�1;H

x�
C0 ;j
;Hx�

C0 ;jþ1;H
x�
C0 ;jþ2Þ

T and the
corresponding FD weights differentiating at ðC0; yjÞ to be WC

k . Then the last condition in (41) is discretized to be
10−9

10−8

10−7

10−6

Er
ro
r

1
�þ

Wþ
1 Hþy �

tan h
�þ

Wþ
1 Hþx ¼

1
��

W�
1 H�y �

tan h
�þ

W�
1 H�x þ

1
�þ
� 1
��

� �
WC

1 HC
x : ð45Þ
By solving four linear algebraic equations given in (44) and (45), one attains four fictitious values eHx
i;j;
eHy

i;j;
eHx

iþ1;j;
eHy

iþ1;j

� �
.

Another four fictitious values can be determined by repeating the above procedure on augmented stencils. In particular,
one more fictitious node will be added in H�x ;H

þ
x ;H

�
y , and Hþy . For example, now H�y and Hþy are updated to be

H�y :¼ Hy
i�4;j; . . . ;Hy

i;j;
eHy

iþ1;j;
eHy

iþ2;j

� �T
and Hþy :¼ eHy

i�1;j;
eHy

i;j;H
y
iþ1;j; . . . ;Hx

iþ5;j

� �T
, while H�x and Hþx are similarly re-defined. Conse-

quently, the FD weights W�
k and Wþ

k need to be re-calculated too. With these new notations, four linear algebraic equations

in (44) and (45) will be solved again to deliver four fictitious values eHx
i�1;j;

eHy
i�1;j;

eHx
iþ2;j;

eHy
iþ2;j

� �
.

The MIB scheme discussed above will essentially represent four layers of eHx and eHy in terms of Hx and Hy values on ten
Cartesian nodes ðxi�4; yjÞ; ðxi�3; yjÞ; . . . ; ðxiþ5; yjÞ and Hx� values on five auxiliary nodes. As in [39], these auxiliary values will be
interpolated/extrapolated along x line by using five nearest nodes exclusively from one side of the interface. Here, we will
only use on-grid Hx values from X�, as Hx� in Eq. (41) is defined for the negative side. Numerically speaking, such an approx-
imation could be an interpolation or an extrapolation. For example, referring to the Fig. 2(b), to estimate Hx�

C0 ;j�2 the interpo-
lation stencil consists of grid points ði; j� 2Þ to ðiþ 4; j� 2Þ, while to approximate Hx�

C0 ;jþ1 the extrapolation stencil consists of
grid points ðiþ 2; jþ 1Þ to ðiþ 6; jþ 1Þ. After interpolation/extrapolation, the size of the point set S remains to be 30 as in
[39]. However, since only Hx values are required on 20 nodes that are not along the primary line y ¼ yi, only 40 function val-
ues of Hx and Hy are needed to represent each fictitious value of eHx or eHy. This implies a smaller matrix bandwidth, com-
paring with the previous MIB scheme [39]. Of course, such a bandwidth is still much larger than the regular FD
discretization. Nevertheless, even though such a bandwidth slightly increases the computing time of the iterative eigenvalue
solver, the MIB scheme is still cost-effective in sense that a coarse mesh is sufficient to achieve high accuracy [38].
3. Numerical experiments

The benchmark tests of step-index fibers [23,18] are considered first to validate the proposed full-vectorial MIB approach.
The fourth order convergence has been numerically confirmed when applying the previously developed MIB method [39] to
these tests. Because the dielectric interface is a circle, the previous MIB method [39] which is based on the cylindrical com-
ponents ðHq;HuÞ is obviously well suited to the problem. In this work, it is of great interest to investigate the performance of
the new MIB method based on the Cartesian components ðHx;HyÞ.

As in [23,18,39], three fiber cases are considered with the fixed core radius R ¼ 4 lm. Denote the refractive index for the
core and cladding to be respectively, ncore and nclad. The model parameters ðncore;nclad; kÞ are chosen as, respectively, (1.45,
1.44, 1.55), (1.5, 1.0, 6.2), and (3.5, 1.0, 6.2) in Cases 1, 2, and 3. An iterative eigenvalue solver based on the simultaneous
iteration method [2] is used to determine the fundamental HE11 mode. As in [39], a large enough square computational do-
main ½�a; a� � ½�a; a� is employed with Dirichlet zero boundary conditions being prescribed on boundaries. A uniform mesh
with size N � N or Dx ¼ Dy is employed. The geometrical symmetry of the waveguide structure is usually exploited in liter-
ature [18] by discretizing only one-quarter of the domain. In the present study, the entire domain will be discretized, because
we are interested in testing the MIB method in dealing with interfaces with arbitrary orientation and location with respect to
the Cartesian coordinate. Also, non-integer domain dimension a will be used. In particular, a is selected to be 10þ p=3 for
Cases 1 and 2, and 5þ p=3 for Case 3.

The absolute errors in effective propagation constants be ¼ b=x are computed against the analytical solutions [23,18,39]
and are depicted as dashed lines in Fig. 3. A linear fitting by means of the least squares is then conducted in the log–log scale
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Fig. 3. Numerical convergence tests of the MIB scheme for constant curvature problems. (a) Case 1; (b) Case 2; (c) Case 3.
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[38,39]. This essentially yields the numerical convergence rate r of the MIB scheme. For Cases 1, 2, and 3, the numerical order
r is calculated to be 3.90, 4.57, and 4.10. These r values and corresponding solid convergence lines are also shown in Fig. 3. It
is clear that the proposed MIB scheme achieves the fourth order convergence for dielectric interfaces with constant
curvature.

We next explore the performance of the proposed MIB method for interfaces with non-constant curvatures. To this end,
the following interface which is parameterized with the polar angle s will be studied
Fig. 4.
Case 3,
C :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 1

2
þ b sinðmsÞ; s 2 ½0;2p�: ð46Þ
Here the parameter m determines the number of ‘‘leaves” of the core region and b controls the magnitude of the curvature.
Four independent tests with parameters ðm; bÞ ¼ ð2;1=4Þ; ð3;1=8Þ; ð4;1=8Þ, and (5, 1/10), are considered. The resulting con-
figurations are shown on the right upper corner of each chart of Fig. 4. It is clear that concave segments or negative curva-
tures are involved in the present interfaces. In all four cases, we will fix the wavelength k ¼ 0:5 and step-index profile to be
ncore ¼ 3:5 and nclad ¼ 1. As in the previous studies, we will assume a large enough computational domain ½�a; a� � ½�a; a� and
a uniform mesh with size N � N. Here we choose a ¼ p=3. No analytical solution is available for the present waveguides with
arbitrarily curved interfaces. To benchmark our numerical results, for each case, an ‘‘exact” solution is computed by using the
MIB method based on a very dense mesh. In particular, the exact effective propagation constant is estimated to be
be ¼ 3:47464791� 4� 10�8; be ¼ 3:47680822� 4� 10�8; jbej ¼ 3:47554731� 1� 10�8, and be ¼ 3:47653400� 1� 10�8,
respectively, for Cases 1, 2, 3, and 4.

By comparing with the exact values, the MIB errors and corresponding convergence lines are depicted in Fig. 4. These re-
sults clearly indicate that the MIB method achieves the fourth order convergence for interfaces with non-constant curva-
tures. On the other hand, it can be observed from Fig. 4 that when the geometrical structure becomes more complicated
or the number of leaves m increases, the convergence pattern of the MIB method becomes more oscillatory and the numer-
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Numerical convergence tests of the MIB scheme for non-constant curvature problems. (a) Case 1, ðm; bÞ ¼ ð2;1=4Þ; (b) Case 2, ðm; bÞ ¼ ð3;1=8Þ; (c)
ðm; bÞ ¼ ð4;1=8Þ; (c) Case 4, ðm; bÞ ¼ ð5;1=10Þ.
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ically detected order becomes slightly smaller. This should be due to the complex nature of the eigenmodes induced by the
structure.

To gain an in-depth understanding, we depict the eigenfunctions of the fundamental modes for all four cases in Figs. 5–8.
Both mesh plots and contour plots are presented. In all contour plots, the corresponding dielectric interface is shown as a
dashed line. We have the following interesting observations from these figures. First, in all charts, eigenmodes are well con-
fined within the interface. This is because of the fast decay of eigenfunctions in the cladding. Second, in comparing among
four cases, certain dependence of field pattern on the integer m can be observed. For even integers, i.e., Cases 1 and 3, both Hx

and Hy are non-oscillatory or can be described as single modes. However, for odd integers, i.e., Cases 2 and 4, the dominant
field Hy remains to be single mode, while the minor field Hx is oscillatory or involves multimodes. The appearance of these
multimodes in Hx shall be due to the fact that the waveguide structure is less symmetrical for odd leaves than for even
leaves. Third, a very complicated multimode pattern is observed for Hx in the Case 4, see Fig. 8(c). It is well known that
the accurate simulation of high frequency wave is numerically very challenging, especially when this is coupled with field
discontinuities across arbitrarily curved interfaces. It is believed that the highly non-uniform convergence trend of the MIB
method shown in Fig. 4(d) is caused by these issues. However, the overall order of accuracy of the proposed MIB method
remains to be four in this very challenging test. This demonstrates the robustness of the MIB method in resolving optical
waveguides with arbitrarily curved interfaces.

Finally, we note that the fundamental eigenvalues and eigenfunctions of the Case 3 are complex, while those of the other
three cases are real. In fact, the absolute value jbej instead of be is reported for the Case 3 in Fig. 4. The exact physical reason-
ing of this complex mode is not very clear. It is perhaps because of the fourfold rotational symmetry of this Case. One thing
which we can certain is that the complex nature is essential to this four leaves structure. To illustrate this point, we consider
a rotation of the structure by introducing a phase angle t in the interface profile:
C :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 1

2
þ 1

8
sinð4ðsþ tÞÞ; s 2 ½0;2p�: ð47Þ
Fig. 5. The fundamental modes in the Case 1. (a) Hx . (b) Hy . (c) Contour plot of Hx . (d) Contour plot of Hy.
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By using a fixed mesh size with N ¼ 121, several rotational angles are tested within t 2 ½0; p2Þ. The corresponding fundamental
eigenvalues are all complex, see Table 1. We note that by using a fixed computational domain ½�p=3;p=3� � ½�p=3;p=3� and
the Dirichlet zero boundary conditions in different orientations, the numerical modes are of course different, even though
the shape of the structure is invariant. The differences between the rotated modes and the unrotated mode are listed
in the last column of Table 1. On the other hand, it is noted that the numerical error of the unrotated mode with N ¼ 121
is about 2:42� 10�6, see also Fig. 4(c). Obviously, the differences shown in Table 1 are all within the order of the numerical
error of the unrotated mode. For this reason, it is believed that given a large enough computational domain, the numerical
eigenvalues of the rotated modes will also converge to the same limit value of the unrotated mode – that is the physical
Fig. 6. The fundamental modes in the Case 2. (a) Hx . (b) Hy . (c) Contour plot of Hx . (d) Contour plot of Hy .

Table 1
Fundamental modes for different orientations of the four leaves structure.

Phase ti Reðbti
e Þ Imðbti

e Þ jbti
e � bt0

e j

t0 ¼ 0 3.4755494992 1:05� 10�6

t1 ¼ p
8 3.4755523185 6:28� 10�7 2:85� 10�6

t2 ¼ p
7 3.4755531302 8:74� 10�7 3:64� 10�6

t3 ¼ p
6 3.4755543737 5:66� 10�7 4:90� 10�6

t4 ¼ p
5 3.4755551534 2:16� 10�7 5:72� 10�6

t5 ¼ p
4 3.4755494992 1:05� 10�6 3:19� 10�13

t6 ¼ p
3 3.4755523787 1:12� 10�7 3:03� 10�6



Fig. 7. The fundamental modes in the Case 3. (a) The real part of Hx . (b) The imaginary part of Hx . (c) The real part of Hy . (d) The imaginary part of Hy . (e)
Contour plot of the imaginary part of Hx . (f) Contour plot of the imaginary part of Hy.
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mode corresponding to this four leaves structure. At last, we note that the imaginary parts of the fundamental models ImðbeÞ
for all orientations are actually very small. When computing magnitude or absolute value jbej, the contribution from the
imaginary parts is comparable to the double precision limit, and is thus negligible.



Fig. 8. The fundamental modes in the Case 4. (a) Hx . (b) Hy . (c) Contour plot of Hx . (d) Contour plot of Hy .

Table 2
Numerically detected CPU times for the optical fiber test (measured in second).

Case 1 Case 2 Case 3

N MIB Total MIB Total MIB Total

31 0.071 1.078 0.072 1.041 0.118 4.090
61 0.163 25.922 0.135 9.028 0.240 48.033
121 0.301 368.095 0.265 219.999 0.484 935.971
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4. Concluding remarks

This paper overcomes the difficulty of the previous matched interface and boundary (MIB) method [39] in dealing with
interfaces with non-constant curvatures for optical waveguide analysis. A novel full-vectorial MIB method is formulated for
transverse components of the magnetic field H. Without introducing local cylindrical coordinates, the MIB interface treat-
ments are conducted along Cartesian directions, based on the newly derived jump conditions. In comparing with the previ-
ous MIB method [39], the proposed MIB method involves a smaller bandwidth for grid nodes in the vicinity of the interface
and its numerical implementation is relatively easier. The fourth order convergence of the proposed MIB method is numer-
ically confirmed for benchmark optical fiber problems. In dealing with more challenging waveguide structures with arbi-
trarily curved interfaces, the MIB method still achieves the fourth order of accuracy, even in cases where high frequency
solutions are interacted with the material interfaces. The generalization of the MIB method to time domain problems are
under our consideration. We finally note the following two features of the MIB method:
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� Both the present MIB and the previous MIB [39] are designed for smoothly curved interfaces, i.e., C1 continuous inter-
faces. The fourth order convergence can not be guaranteed if the interface is only C0 continuous, because certain corner
singularity problems may occur [17,29,38].

� Computationally speaking, the CPU time spend for the MIB preprocessing is usually much less than that costed by solv-
ing the eigenvalues via a standard iterative solver [2]. As discussed above, the bandwidth of the MIB method for each
irregular node is fixed to be 40 in the present MIB method. Moreover, such a bandwidth is independent of the mesh
size N. On the other hand, the total number of irregular nodes increases with respect to the mesh size N linearly,
because the number of total irregular points is one-dimension lower than the number of total grid points. Thus, the
computational overhead of the MIB treatments essentially scales as OðNÞ. Furthermore, the MIB treatment of a single
irregular node is actually very efficient. The major algebraic computation is solving a small linear system, such as (44)
and (45), to attain representation coefficients. Therefore, the CPU time for MIB preprocessing is usually negligible in
practical computations. To illustrate this point, the numerically detected CPU times for the three cases of optical fiber
test are listed in Table 2. The linear trend is clearly seen for the MIB CPU times for all three cases and the MIB overhead
costs less than 1% CPU time when N is large.
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